
Exam 2023 Fall

Contents
Exam Instructions

Task 1: Event Probability

Task 2: Arrival Times

Task 3: Special Occurrence

Task 4: Punctuation Ratio

Task 5: Checkerboard Sum

Task 6: Collatz Conjecture

Task 7: Bank Account

Task 8: Phonebook Merge

Task 9: Nitrate Levels

Task 10: Overdraft Account

Course name: Computer programming

Course number: 02002 and 02003

Exam date: 6th of December 2023

Aids allowed: All aids, no internet

Exam duration: 4 hours

Weighting: All tasks have equal weight

Number of tasks: 10

Number of pages: 13

Exam Instructions
Prerequisites
To be able to solve the exam tasks, you need to have a computer with Python installed. All exam problems can be solved in
either IDLE or VS Code.

Exam Material
The exam material consists of a single zip file. You should unzip this file to a folder on your computer. The zip file contains the
exam text as a PDF document in English 2023_12_exam_English.pdf (this document) and the same document in Danish
2023_12_exam_Danish.pdf . The zip file also contains a folder 2023_12_exam with the following content:

An empty Python file for each task, <task_name>.py , where <task_name> is the name of the task. These are the files
where you should write your solutions and submit them at the end of the exam.

A Python file for each task, test_task_<n>_<task_name>.py , where <n> is the task number, and <task_name> is the
name of the task. These contain code that checks if your solution has the correct behavior for the example in the exam
text. To be sure that you use the tests as intended, do not edit these files.

A Python file test_tasks_all.py that runs all test files.

A folder files containing data files needed to test tasks involving files, if any.

Solving Exam Tasks
If you are using VS Code, you should start by going to File Open Folder.. and choosing the 2023_12_exam folder
inside the folder you unzipped to above.

When solving the exam tasks, follow the instructions in the exam text. You can test your solutions by running the provided
testing scripts. For the testing scripts to work, your solutions must be in the same folder as the testing scripts.

If you believe there is a mistake or ambiguity in the text, you should use the most reasonable interpretation of the text to solve
the task to the best of your ability. If we, after the exam, find inconsistencies in one or more tasks, this will be taken into
account in the assessment.

Your solutions should only use the tools that have been taught in the course. Solutions that import modules other than math ,
numpy , os , or matplotlib will not be graded. The test scripts provided do not check for this, so it is your responsibility to

ensure that your solutions only use the allowed modules.

Evaluation of the Exam
We will run a number additional tests on each of your solutions that checks if it behaves as specified in the task. The fraction of
correct tests is the score for each task. The overall score is the average of the scores.

A solution where the provided test fails is incorrect. This can be because the file or function are named incorrectly. However, if
a provided test passes, it does not guarantee that the solution is correct for our additional tests.

→

Handing in
To hand in your solutions, upload your Python files with solutions to the Digital Exam system. In the Digital Exam system, files
can be submitted as either main document or attachments. You can upload any of your solutions as the main document, and
the rest as attachments.

You should hand in exactly the following files:

arrival_times.py

bank_account.py

checkerboard_sum.py

collatz_conjecture.py

event_probability.py

nitrate_levels.py

phonebook_merge.py

punctuation_ratio.py

special_occurrence.py

Any file handed in that is not in the list above will not be taken into account in your assessment.

Task 1: Event Probability
When describing extreme events, such as major earthquakes, landslides, and floods, we utilize the concept of a return period

, given in years. For example, a flood with a return period of 100 years, referred to as a 100-year flood, is a flood that has a

probability of of occurring in any given year. The probability that an event with a return period will occur within a time
period of years can be expressed as

You should write a function that takes as input two numbers: the return period (in years) and the time period (also in years).
The function should return the probability of an event with a return period occurring during the given time period.

As an example, consider a return period of 100 years and the time period of 25 years. The probability that the 100-year event
will occur in a period of 25 years is (displayed with 7 decimal places)

which is what the function should return, as shown in the code cell below.

The filename and requirements are in the box below:

T

1

100

T

n

P = 1 − (1 −

1

T

)

n

.

P = 1 − (1 −

1

100

)

25

= 0.2221786

>>> event_probability(100, 25)
0.22217864060085335

event_probability(T, n)

Return the event probability.
Parameters:

Returns:

event_probability.py

T int A positive integer, the return period.

n int A positive integer, the time period.

float The probability that an event with return period T will occur in the time period.

Task 2: Arrival Times
Given a list of scheduled train arrivals (hours and minutes) and a delay in minutes, we need to determine the expected arrival
times. The scheduled times are given as a list of strings. Each time is formatted as hh:mm for a 24-hour display. Here, hh is
the number of hours between 00 and 23 written using two digits, while mm is the number of minutes between 00 and 59
written using two digits. Expected arrival times need to be formatted in the same way.

Write a function that takes as input a list of scheduled arrivals and a delay in minutes. The list may contain an arbitrary number
of scheduled arrivals, but the delay is the same for all arrivals. The function should return a list of strings with expected arrival
times formatted as hh:mm in 24-hour time notation with two digits for both hours and minutes. Remember to handle the case
when the delay causes the arrival to be postponed until the next day.

As an example, consider the list ['12:37', '08:10'] and a delay of 25 minutes. The first scheduled arrival is 12:37.
However, with a 25-minute delay, the expected arrival is 13:02. The second scheduled arrival is 08:10, but with a 25-minute
delay, the expected arrival is 08:35. You can see the expected output in the code cell below.

The filename and requirements are in the box below:

>>> arrival_times(['12:37', '08:10'], 25)
['13:02', '08:35']

arrival_times(schedule, delay)

Return the arrival times given scheduled times and delay.
Parameters:

Returns:

arrival_times.py

schedule list A list of strings, the scheduled times.

delay int A positive integer, the delay (in minutes).

list The arrival times, a list of strings.

Task 3: Special Occurrence
Given a sequence of positive integers, we want to find what we call a special occurrence. A special occurrence is when the
number 5 is followed by two numbers where exactly one is 7. Thus the occurrence …5, 3, 7… is a special occurrence, and so
is the occurrence …5, 7, 8…, while …5, 7, 7… is not a special occurrence.

Write a function that takes as input a list of positive integers. The function should return the index of the number 5 in the first
special occurrence. If no such occurrence exists, the function should return -1.

As an example, consider the sequence [2, 8, 11, 3, 12, 5, 7, 7, 11, 3, 12, 5, 2, 7, 5, 7, 2, 6] . The number 5
occurs three times in the sequence, at positions with index 5, 11, and 14. The first occurrence of the number 5 is not a special
occurrence as it is followed by two 7. The second occurrence is a special occurrence as it is followed by 2 and 7. The third
occurrence is a special occurrence, but it occurs later than the second occurrence. Therefore, the function should return 11, as
shown below.

The filename and requirements are in the box below:

>>> special_occurrence([2, 8, 11, 3, 12, 5, 7, 7, 11, 3, 12, 5, 2, 7, 5, 7, 2, 6])
11

special_occurrence(sequence)

Return the index of the first special occurrence.
Parameters:

Returns:

special_occurrence.py

sequence list A list of positive integers with 0 or more elements.

int The index of the first 5 followed by two numbers where exactly one is 7.

Task 4: Punctuation Ratio
We would like to collect statistics about using commas in connection with the word and. Therefore, given a text, we first want
to identify all occurrences of the lower-case word and between two spaces, that is the string ' and ' . Then, we want to
calculate the ratio of the cases where a comma immediately precedes ' and ' against the cases without the comma (that is,
any other character immediately precedes ' and '). The ratio should be given as

Write a function that takes a string with text as input. The function should return a number giving the ratio of occurrences of '
and ' preceded by a comma against the occurrences of ' and ' not preceded by a comma. You can assume that the text
does not start with ' and ' . If either the numerator or the denominator is zero, the function should return 0.

Consider the text with all seven occurrences of ' and ' highlighted.

> Sara and Emma like to travel, bike, and hike, and when they are traveling they always take their bikes, hiking shoes, and
sleeping bags. Last year, Sarah and Emma traveled to Italy, France, and Spain. And that was fun, and, according to Sara and
Emma, very expensive!
The string ' and ' is preceded by a comma four times (highlighted in blue), while it is not preceded by a comma three times
(highlighted in orange). The ratio we should compute is therefore 4/3, and this is what your function should return, as seen in
the code box below. Note that ' And ' and ' and, ' are not counted, as we only consider lower-case word and between
two spaces.

The filename and requirements are in the box below:

ratio =

number of cases with a comma before ' and '

number of cases without a comma before ' and '

.

>>> text = ("Sara and Emma like to travel, bike, and hike, and when they are " +
... "traveling they always take their bikes, hiking shoes, and sleeping bags. " +
... "Last year, Sarah and Emma traveled to Italy, France, and Spain. And that " +
... "was fun, and, according to Sara and Emma, very expensive!")
>>> punctuation_ratio(text)
1.3333333333333333

punctuation_ratio(text)

Return punctuation ratio.
Parameters:

Returns:

punctuation_ratio.py

text str A string with some text.

float Ratio of ‘ and ‘ preceded by comma against ‘ and ‘ not preceded by comma.

Task 5: Checkerboard Sum
Given a 2D NumPy array, we want to compute the sum of all elements occurring in a checkerboard pattern of arbitrary size.
The square in the first row and the first column is always black.

Write a function which takes as input a 2D NumPy array. The function should return the sum of all elements in the black
squares of the checkerboard pattern.

Consider the 2D NumPy array below.

Arranged in a checkerboard pattern the array looks like this:

1.42 4.0 55.56 63.0

2.22 2.22 33.73 40.11

12.1 17.24 18.0 33.5

21.15 14.76 17.3 22.1

5.34 6.0 9.8 8.18

The sum of all elements occurring in a checkerboard pattern on the black squares is

and this is what your function should return, as seen below.

The filename and requirements are in the box below:

A = np.array([[1.42, 4.0, 55.56, 63.0],
 [2.22, 2.22, 33.73, 40.11],
 [12.1, 17.24, 18.0, 33.5],
 [21.15, 14.76, 17.3, 22.1],
 [5.34, 6.0, 9.8, 8.18]])

1.42 + 55.56 + 2.22 + 40.11 + 12.1 + 18.0 + 14.76 + 22.1 + 5.34 + 9.8 = 181.41

>>> checkerboard_sum(A)
np.float64(181.41)

checkerboard_sum(A)

Return checkerboard sum.
Parameters:

Returns:

checkerboard_sum.py

A numpy.ndarray A 2D NumPy array.

float The sum of elements in checkerboard pattern.

Task 6: Collatz Conjecture
The Collatz conjecture is an unsolved problems in mathematics. One step of the Collatz conjecture is defined as

The conjecture states that for any positive integer , the sequence will reach the
number 1, but whether the conjecture is true has not yet been proven or disproven.

Write a function that takes as input a positive integer. The function should return the number of steps required to reach the
number 1.

Consider the number . Since is an odd number, the next number in the sequence is . This is an even
number, so the next number in the sequence is . The full sequence is , and it took steps to
reach the number . The expected output is shown in the code cell below.

The filename and requirements are in the box below:

f(n) = { .

n/2 if n is even

3n+ 1 if n is odd

n n, f(n), f(f(n)), f(f(f(n))), …

3 3 3 ⋅ 3 + 1 = 10

10/2 = 5 3, 10, 5, 16, 8, 4, 2, 1 7

1

>>> collatz_conjecture(3)
7

collatz_conjecture(n)

Return the number of steps to reach 1 in the Collatz conjecture.
Parameters:

Returns:

collatz_conjecture.py

n int A positive integer, the starting number.

int The number of steps.

Task 7: Bank Account
We want to create a class to represent a bank account, allowing for depositing and withdrawing money while ensuring the
balance never goes negative.

Write the class definition for the class BankAccount . The balance must be stored in an attribute called balance . The
__init__ method should take the initial balance as input. The deposit method should take as input an amount to deposit

and add it to the balance. The withdraw method should take as input an amount to withdraw, subtract it from the balance,
and return the amount withdrawn. If the withdrawal would result in a negative balance, the method should leave the balance
unchanged and return 0. The get_balance method should return the current account balance.

Consider the example below.

In this example, the balance is 1000 initially. Then, 500 is deposited. Next, 200 is withdrawn, which is allowed since the
balance before withdrawing is 1500. Finally, an attempt to withdraw 2000 is made, but since the current balance is only 1300,
the withdrawal is not possible. Therefore the method returns 0, and the balance remains unchanged.

The filename and requirements are in the box below:

>>> my_account = BankAccount(1000)
>>> my_account.get_balance()
1000
>>> my_account.deposit(500)
>>> my_account.get_balance()
1500
>>> my_account.withdraw(200)
200
>>> my_account.get_balance()
1300
>>> my_account.withdraw(2000)
0
>>> my_account.get_balance()
1300

BankAccount()

A class that represents a bank account.
__init__(balance)

Initialize the bank account with a balance.
Parameters:

deposit(amount)

Deposit money into the account.
Parameters:

withdraw(amount)

Withdraw money from the account.
Parameters:

Returns:

get_balance()

Return the current balance.
Returns:

bank_account.py

balance Non-negative int The initial balance of the bank account.

amount Positive int The amount of money to deposit.

amount Positive int The amount of money to withdraw.

int The amount of money withdrawn, or 0 if the balance is insufficient.

int The current balance.

Task 8: Phonebook Merge
A phonebook is represented as a dictionary where each key corresponds to a contact’s name, and the corresponding value is
a list of phone numbers associated with that contact. Both the names and phone numbers are strings. Given a second
phonebook, we want to add its content to the first phonebook, but without creating duplicates.

Write a function that takes two dictionaries representing phonebooks as input. The function should not have a return
statement, but it should modify the first phonebook by adding the content from the second phonebook. Specifically:

1. If a name from the second phonebook is not present in the first phonebook, it should be added to the first phonebook
along with its associated phone numbers.

2. If a name from the second phonebook is already present in the first phonebook, then we look at the two lists of phone
numbers for that name. Phone numbers that are only present in the second list should be appended to the first list in the
order they occur in the second list.

Consider the example below.

Consider now the elements of second_phonebook . The name Anna is not present in phonebook , so it should be added
along with its associated phone numbers. The name Steve is already present in phonebook , and the phone numbers from
second_phonebook include a new number 45455555, which should be appended to the list of phone numbers for Steve. The

name Mads is already present in phonebook , and second_phonebook does not provide any new phone numbers for Mads,
so there is nothing to add.

The expected behavior is shown in the code cell below.

The filename and requirements are in the box below:

phonebook = {'Liv': ['55511112', '18777890'] ,
 'Mads': ['27274445', '48533336'],
 'Steve': ['45455555', '25455525']}

second_phonebook = {'Anna': ['89577772'] ,
 'Steve': ['25257755', '25455525'],
 'Mads': ['48533336', '27274445']}

>>> phonebook_merge(phonebook, second_phonebook)
>>> for name in phonebook:
... print(name, phonebook[name])
Liv ['55511112', '18777890']
Mads ['27274445', '48533336']
Steve ['45455555', '25455525', '25257755']
Anna ['89577772']

phonebook_merge(phonebook, second_phonebook)

Modify phonebook by adding new content from second_phonebook.
Parameters:

phonebook_merge.py

phonebook dict Dictionary with names and list of phone numbers.

second_phonebook dict Dictionary with names and list of phone numbers.

Task 9: Nitrate Levels
Once a week, samples of drinking water are tested for nitrate. The test results are stored in a file where each line contains a
floating-point number representing one nitrate level measurement. Nitrate levels are categorized as:

Very low: Nitrate levels less than or equal to 4.0 mg/l.

Low: Nitrate levels above 4.0 but less than or equal to 9.0 mg/l.

Normal: Nitrate levels above 9.0 and below 40.0 mg/l.

High: Nitrate levels greater than or equal to 40.0 but below 50.0 mg/l.

Very high: Nitrate levels greater than or equal to 50.0 mg/l.

Note here that when the nitrate level falls on the border between two categories, it is included in the category further from
normal. For example, a nitrate level of 4.0 mg/l is very low, and a nitrate level of 40.0 mg/l is high.

Write a function that takes a string containing the file name with the nitrate levels as input. The function should return the
number of weeks where the nitrate levels were very low, low, normal, high, and very high, respectively, as shown in the
example below.

Consider the file files/nitrate_data_A.txt with the content below.

None of the values are below 9.0, so none belong to the lower two categories. Eight values are in the range from 9.0 to 40.0,
classifying them as normal. Two values are between 40.0 and 50.0, placing them in the high category. There are no values
that are classified as very high. The function therefore returns 0, 0, 8, 2, 0.

The expected output may be seen in the example.

The filename and requirements are in the box below:

34.5
34.9
36.7
29.9
34.5
44.5
34.5
46.5
29.9
34.5

>>> nitrate_levels('files/nitrate_data_A.txt')
(0, 0, 8, 2, 0)

nitrate_levels(filename)

Return the number of weekly measurements in each category.
Parameters:

Returns:

nitrate_levels.py

filename str Filename of the data file.

tuple Number of measurements in each of five categories for nitrate levels.

Task 10: Overdraft Account
We want to create a subclass of the BankAccount class from Task 7. This subclass should allow the user to have a negative
balance, as long as the sum of the balance and the overdraft limit is not negative.

Write the class definition for the subclass OverdraftAccount , which inherits from BankAccount . Each instance of the
subclass should store the overdraft limit. The constructor of the new class should take as input the initial balance and the
overdraft limit (a non-negative integer). The withdraw method should ensure that the overdraft limit is not exceeded. If the
withdrawal is not possible, the balance should remain unchanged. As before, the withdraw method should return the amount
withdrawn. You should modify the necessary methods of the class to achieve this behavior, and inherit the rest of the methods
from the parent class.

You should write the class definition for OverdraftAccount in the same file as the class definition for BankAccount .

Refer to the example below for expected behavior.

In this example, the initial balance is 0, and the overdraft limit is 500. First, 1000 is deposited. Then, 1300 is withdrawn. This is
allowed since it brings the balance to -300 which is above -500. Finally, 500 is attempted to be withdrawn, but that would bring
the balance below -500. So, this withdrawal is not possible, and the balance remains unchanged.

The filename and requirements are in the box below:

>>> my_account = OverdraftAccount(0, 500)
>>> my_account.get_balance()
0
>>> my_account.deposit(1000)
>>> my_account.get_balance()
1000
>>> my_account.withdraw(1300)
1300
>>> my_account.get_balance()
-300
>>> my_account.withdraw(500)
0
>>> my_account.get_balance()
-300

OverdraftAccount()

A class that represents a bank account allowing overdraft.
__init__(balance, overdraft_limit)

Initialize the overdraft account with a balance and an overdraft limit.
Parameters:

withdraw(amount)

Withdraw money from the bank account.
Parameters:

Returns:

bank_account.py

balance Non-negative int The initial balance of the bank account.

overdraft_limit Non-negative int The overdraft limit of the bank account.

amount Positive int The amount of money to withdraw.

int The amount of money withdrawn, or 0 if withdrawal fails.

